If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-20q-108=0
a = 1; b = -20; c = -108;
Δ = b2-4ac
Δ = -202-4·1·(-108)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{13}}{2*1}=\frac{20-8\sqrt{13}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{13}}{2*1}=\frac{20+8\sqrt{13}}{2} $
| 8(5k+8)-3k=-121 | | 10=7a | | 2(5(5)-4)=x | | 4p/7=4 | | 62=32-5(x-2) | | -8p/5=16 | | 11x-15=6x+40 | | (4(x-8))/5=-2(3x+1)+2/5 | | 2(5x-4)=3x+27 | | -7p/2=21 | | 2x+22=-6(x-1) | | 4(w-9)=-6w+34 | | 8t^2-16t+20=0 | | -7u-31=9(u+9) | | 6v+68=180 | | -7u-4=10 | | 24=-6y+4(y+5) | | -27=3(w-8)-6w | | (6x)=0 | | 5(v+5)+4v=-20 | | -1/2(12p-42)=-3 | | 6p/5=30 | | X/3+x/13+x/19=40. | | 7=5-2y | | -6-3a=4a-5+6 | | x+(x+30)=72 | | x+(x+15)2=72 | | x+53/8=5 | | 1/6d+2/3=1/4d+2 | | +7n-2n=10+3n | | 7m+19=2m+7 | | x+(x+2)=193.4 |